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1. INTRODUCTION
The strong coupling between longitudinal and Goldstone modes
in Bose gases leads to known IR divergences in perturbation the-
ory [1]. As a non-perturbative formalism the Functional renor-
malisation group (FRG) can overcome these divergences [2],
however IR cancellations are still not respected due to the trun-
cation of the action.
Popov developed an hydrodynamic effective theory to describe
the low-momentum regime of Bose gases [3]. He introduced an
Amplitude-Phase (AP) representation for the boson fields which
ease the correct treatment of the phase fluctuations. Popov’s
ideas led to the concept of quasi-condensate [4], which is par-
ticularly useful in the study of low-dimensional systems.
Following Popov’s ideas, we implement scale-dependent fields
in the FRG that interpolates between a Cartesian representation
for high-momentum and an AP one for low-momentum. We
study O(2) models in two and three dimensions in order to test
our approach.

2. EFFECTIVE ACTION
The flow of the effective action Γ is dictated by [5]
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where Φ̇ = ∂kΦ and Φ̇(1) = δ Φ̇/δΦ. We consider the O(2)
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where ρ = φ †φ . We truncate the potential as [6]

U(ρ,µ) = u0 +u1(ρ−ρ0)+
u2
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2,

where µ0 is the physical chemical potential. At k = 0 we obtain
the physical boson density n0 and superfluid density ρs = Zmρ0.

3. INTERPOLATING FIELDS
We use the k-dependent fields Φ = (σ ,ϑ) defined by [7]

φ = (σ +bk)eiϑ/bk−(bk−
√

ρ0), bk ∈ [
√

ρ0,∞) (∗∗)

The fields change representation as bk varies with k. In the limits
φ take the forms

φ =

{
(
√

ρ0 +σ)+ iϑ : bk→ ∞ (Cartesian),
(
√

ρ0 +σ)eiϑ/
√

ρ0 : bk = φ0 (AP).

ρ0 has different meanings in each limit. From the long-distance
behaviour of the correlation function Gn(x) = 〈φ †(x)φ †(0)〉

lim
|x|→∞

Gn(x) =

{
ρc : (Cart.) ρ0 = ρc,

ρqe
1

2ρq 〈(ϑ(x)−ϑ(0))2〉 : (AP) ρ0 = ρq,

with ρc the condensate density and ρq the quasi-condensate den-
sity. In condensed systems, such as in three dimensions, both ρc
and ρq are finite and ρc is the order parameter. In superfluid
systems without a broken symmetry, such as in two dimensions
at finite temperature, ρq is finite while ρc = 0.

REFERENCES

[1] Nepomnyashchii, A. A. et al., Sov. Phys. JETP 21, 1 (1975).
[2] Dupuis, N., Phys. Rev. E 83, 031120 (2011).
[3] Popov, V. N. Functional Integrals and Collective Excitations. (Cambridge

University Press, Cambridge, England, 1987).
[4] Kagan, Y. et al., Sov. Phys. JETP 66, 314 (1987).
[5] Pawlowski, J. M., Annals of Physics 322, 2831-2915 (2007).

[6] Floerchinger, S. et al., Phys. Rev. A 77, 053603 (2008).
[7] Lamprecht, F., Master’s thesis (2007).

Pawlowski, Jan M., Private communication.
[8] Isaule, F., et al., arXiv:1806.10373.
[9] Prokof’ev, N. et al., Phys. Rev. A 69, 053625 (2004).
[10] Prokof’ev, N. et al., Phys. Rev. A 66, 043608 (2002).

4. EVOLUTION IN THE BROKEN PHASE
By inserting the interpolating fields (∗∗) into the ansatz for Γ (∗) we obtain the parametrisation

Γ =− 1
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k(σ)(∇ϑ)2 +
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Ck(σ ,ϑ ,∇σ ,∇ϑ)+U(ρ,µ)

]
,

where Zϑ = Zm and Zσ = Zϑ +ρ0Ym at ρ = ρ0.
See specific details on Ref. [8].

The transition should be made around the "heal-
ing scale” kh defined by

wkh =
Zσ k2

h/2m
2u2ρ0

= 1.

The Cartesian representation should be used for
k� kh, and the AP representation for k� kh
where Goldstone fluctuations dominate. We
choose

bk = φ0 [1+wν
k ] .

where ν controls how fast the transition is made.
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d=2

Λ: Initial UV scale

5. RESULTS AND CONCLUSIONS
We present results for two and three dimensions. We study the dimensionless functions

fs = ρs/(mdT 2gd−2)
1

4−d , λ = (n0−nc)/(mdT 2g2)
1

4−d , nc: critical boson density

which are universal functions of the dimensionless control parameter X =(µ0−µc)/(mdT 2g2)
1
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• The results converge for ν ≥ 2.5. In d = 3 we obtain a good agreement with the simulations.

• We obtain a stable superfluid phase in d = 2 and a reasonable good agreement with the
simulations. This is achieved by working in terms of a quasi-condensate at low scales.

• The deviations in d = 2 are expected since vortex effects were not included.
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